Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Eur J Immunol ; : e2350643, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581085

ABSTRACT

We implicate a phenotype of trained immunity in bone-marrow-derived macrophages in the onset and progression of type 1 diabetes in nonobese diabetic mice. Treatment with FhHDM-1 reversed immune training, reducing histone methylation and glycolysis, and decreasing proinflammatory cytokine production to the same level as macrophages from nondiabetic immune-competent BALB/c mice.

2.
Sci Rep ; 14(1): 7431, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548871

ABSTRACT

Effective management and control of parasitic infections on farms depends on their early detection. Traditional serological diagnostic methods for Fasciola hepatica infection in livestock are specific and sensitive, but currently the earliest detection of the parasite only occurs at approximately three weeks post-infection. At this timepoint, parasites have already entered the liver and caused the tissue damage and immunopathology that results in reduced body weight and loss in productivity. Here, we investigated whether the differential abundance of micro(mi)miRNAs in sera of F. hepatica-infected sheep has potential as a tool for the early diagnosis of infection. Using miRNA sequencing analysis, we discovered specific profiles of sheep miRNAs at both the pre-hepatic and hepatic infection phases in comparison to non-infected sheep. In addition, six F. hepatica-derived miRNAs were specifically identified in sera from infected sheep. Thus, a panel of differentially expressed miRNAs comprising four sheep (miR-3231-3p; miR133-5p; 3957-5p; 1197-3p) and two parasite miRNAs (miR-124-3p; miR-Novel-11-5p) were selected as potential biomarkers. The expression of these candidates in sera samples from longitudinal sheep infection studies collected between 7 days and 23 weeks was quantified using RT-qPCR and compared to samples from age-matched non-infected sheep. We identified oar-miR-133-5p and oar-miR-3957-5p as promising biomarkers of fasciolosis, detecting infection as early as 7 days. The differential expression of the other selected miRNAs was not sufficient to diagnose infection; however, our analysis found that the most abundant forms of fhe-miR-124-3p in sera were sequence variants (IsomiRs) of the canonical miRNA, highlighting the critical importance of primer design for accurate diagnostic RT-qPCR. Accordingly, this investigative study suggests that certain miRNAs are biomarkers of F. hepatica infection and validates miRNA-based diagnostics for the detection of fasciolosis in sheep.


Subject(s)
Circulating MicroRNA , Fascioliasis , MicroRNAs , Animals , Sheep/genetics , MicroRNAs/genetics , Fascioliasis/diagnosis , Fascioliasis/genetics , Fascioliasis/veterinary , Biomarkers
3.
Trends Parasitol ; 40(2): 176-191, 2024 02.
Article in English | MEDLINE | ID: mdl-38151361

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs that oversee gene modulation. They are integral to cellular functions and can migrate between species, leading to cross-kingdom gene suppression. Recent breakthroughs in helminth genome studies have sparked curiosity about helminth RNA regulators and their ability to regulate genes across species. Growing data indicate that helminth miRNAs have a significant impact on the host's immune system. Specific miRNAs from helminth parasites can merge with the host's miRNA system, implying that parasites could exploit their host's regulatory machinery and function. This review highlights the role of cross-kingdom helminth-derived miRNAs in the interplay between host and parasite, exploring potential routes for their uptake, processing, and consequences in host interaction.


Subject(s)
Helminths , MicroRNAs , Parasites , Animals , MicroRNAs/genetics , Helminths/genetics , Parasites/genetics
4.
Front Endocrinol (Lausanne) ; 14: 1205219, 2023.
Article in English | MEDLINE | ID: mdl-37564976

ABSTRACT

Diabetes is the fastest growing chronic disease globally, with prevalence increasing at a faster rate than heart disease and cancer. While the disease presents clinically as chronic hyperglycaemia, two distinct subtypes have been recognised. Type 1 diabetes (T1D) is characterised as an autoimmune disease in which the insulin-producing pancreatic ß-cells are destroyed, and type 2 diabetes (T2D) arises due to metabolic insufficiency, in which inadequate amounts of insulin are produced, and/or the actions of insulin are diminished. It is now apparent that pro-inflammatory responses cause a loss of functional ß-cell mass, and this is the common underlying mechanism of both T1D and T2D. Macrophages are the central immune cells in the pathogenesis of both diseases and play a major role in the initiation and perpetuation of the proinflammatory responses that compromise ß-cell function. Furthermore, it is the crosstalk between macrophages and ß-cells that orchestrates the inflammatory response and ensuing ß-cell dysfunction/destruction. Conversely, this crosstalk can induce immune tolerance and preservation of ß-cell mass and function. Thus, specifically targeting the intercellular communication between macrophages and ß-cells offers a unique strategy to prevent/halt the islet inflammatory events underpinning T1D and T2D. Due to their potent ability to regulate mammalian immune responses, parasitic worms (helminths), and their excretory/secretory products, have been examined for their potential as therapeutic agents for both T1D and T2D. This research has yielded positive results in disease prevention, both clinically and in animal models. However, the focus of research has been on the modulation of immune cells and their effectors. This approach has ignored the direct effects of helminths and their products on ß-cells, and the modulation of signal exchange between macrophages and ß-cells. This review explores how the alterations to macrophages induced by helminths, and their products, influence the crosstalk with ß-cells to promote their function and survival. In addition, the evidence that parasite-derived products interact directly with endocrine cells to influence their communication with macrophages to prevent ß-cell death and enhance function is discussed. This new paradigm of two-way metabolic conversations between endocrine cells and macrophages opens new avenues for the treatment of immune-mediated metabolic disease.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Helminths , Animals , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/prevention & control , Diabetes Mellitus, Type 2/metabolism , Macrophages/metabolism , Insulin/metabolism , Mammals
5.
Front Immunol ; 14: 1018076, 2023.
Article in English | MEDLINE | ID: mdl-36761766

ABSTRACT

We have previously identified an immune modulating peptide, termed FhHDM-1, within the secretions of the liver fluke, Fasciola hepatica, which is sufficiently potent to prevent the progression of type 1 diabetes and multiple sclerosis in murine models of disease. Here, we have determined that the FhHDM-1 peptide regulates inflammation by reprogramming macrophage metabolism. Specifically, FhHDM-1 switched macrophage metabolism to a dependence on oxidative phosphorylation fuelled by fatty acids and supported by the induction of glutaminolysis. The catabolism of glutamine also resulted in an accumulation of alpha ketoglutarate (α-KG). These changes in metabolic activity were associated with a concomitant reduction in glycolytic flux, and the subsequent decrease in TNF and IL-6 production at the protein level. Interestingly, FhHDM-1 treated macrophages did not express the characteristic genes of an M2 phenotype, thereby indicating the specific regulation of inflammation, as opposed to the induction of an anti-inflammatory phenotype per se. Use of an inactive derivative of FhHDM-1, which did not modulate macrophage responses, revealed that the regulation of immune responses was dependent on the ability of FhHDM-1 to modulate lysosomal pH. These results identify a novel functional association between the lysosome and mitochondrial metabolism in macrophages, and further highlight the significant therapeutic potential of FhHDM-1 to prevent inflammation.


Subject(s)
Fasciola hepatica , Helminth Proteins , Animals , Mice , Macrophages , Peptides/metabolism , Inflammation
6.
Thorax ; 78(7): 661-673, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36344253

ABSTRACT

BACKGROUND: Severe neutrophilic asthma is resistant to treatment with glucocorticoids. The immunomodulatory protein macrophage migration inhibitory factor (MIF) promotes neutrophil recruitment to the lung and antagonises responses to glucocorticoids. We hypothesised that MIF promotes glucocorticoid resistance of neutrophilic inflammation in severe asthma. METHODS: We examined whether sputum MIF protein correlated with clinical and molecular characteristics of severe neutrophilic asthma in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. We also investigated whether MIF regulates neutrophilic inflammation and glucocorticoid responsiveness in a murine model of severe asthma in vivo. RESULTS: MIF protein levels positively correlated with the number of exacerbations in the previous year, sputum neutrophils and oral corticosteroid use across all U-BIOPRED subjects. Further analysis of MIF protein expression according to U-BIOPRED-defined transcriptomic-associated clusters (TACs) revealed increased MIF protein and a corresponding decrease in annexin-A1 protein in TAC2, which is most closely associated with airway neutrophilia and NLRP3 inflammasome activation. In a murine model of severe asthma, treatment with the MIF antagonist ISO-1 significantly inhibited neutrophilic inflammation and increased glucocorticoid responsiveness. Coimmunoprecipitation studies using lung tissue lysates demonstrated that MIF directly interacts with and cleaves annexin-A1, potentially reducing its biological activity. CONCLUSION: Our data suggest that MIF promotes glucocorticoid-resistance of neutrophilic inflammation by reducing the biological activity of annexin-A1, a potent glucocorticoid-regulated protein that inhibits neutrophil accumulation at sites of inflammation. This represents a previously unrecognised role for MIF in the regulation of inflammation and points to MIF as a potential therapeutic target for the management of severe neutrophilic asthma.


Subject(s)
Asthma , Macrophage Migration-Inhibitory Factors , Humans , Animals , Mice , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/therapeutic use , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Disease Models, Animal , Asthma/drug therapy , Asthma/metabolism , Inflammation/metabolism , Neutrophils/metabolism , Annexins/metabolism , Annexins/therapeutic use
7.
BMC Genomics ; 23(1): 419, 2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35659245

ABSTRACT

BACKGROUND: MiRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression in organisms ranging from viruses to mammals. There is great relevance in understanding how miRNAs regulate genes involved in the growth, development, and maturation of the many parasitic worms (helminths) that together afflict more than 2 billion people. RESULTS: Here, we describe the miRNAs expressed by each of the predominant intra-mammalian development stages of Fasciola hepatica, a foodborne flatworm that infects a wide range of mammals worldwide, most importantly humans and their livestock. A total of 124 miRNAs were profiled, 72 of which had been previously reported and three of which were conserved miRNA sequences described here for the first time. The remaining 49 miRNAs were novel sequences of which, 31 were conserved with F. gigantica and the remaining 18 were specific to F. hepatica. The newly excysted juveniles express 22 unique miRNAs while the immature liver and mature bile duct stages each express 16 unique miRNAs. We discovered several sequence variant miRNAs (IsomiRs) as well as miRNA clusters that exhibit strict temporal expression paralleling parasite development. Target analysis revealed the close association between miRNA expression and stage-specific changes in the transcriptome; for example, we identified specific miRNAs that target parasite proteases known to be essential for intestinal wall penetration (cathepsin L3). Moreover, we demonstrate that miRNAs fine-tune the expression of genes involved in the metabolic pathways that allow the parasites to move from an aerobic external environment to the anerobic environment of the host. CONCLUSIONS: These results provide novel insight into the regulation of helminth parasite development and identifies new genes and miRNAs for therapeutic development to limit the virulence and pathogenesis caused by F. hepatica.


Subject(s)
Fasciola hepatica , MicroRNAs , Parasites , Animals , Fasciola hepatica/genetics , Host-Parasite Interactions/genetics , Humans , Mammals/genetics , MicroRNAs/genetics , Parasites/genetics , Transcriptome
8.
Parasitology ; 149(10): 1364-1373, 2022 09.
Article in English | MEDLINE | ID: mdl-35621040

ABSTRACT

The food-borne trematodes, Opisthorchis viverrini and Clonorchis sinensis, are classified as group 1 biological carcinogens: definitive causes of cancer. By contrast, infections with Fasciola hepatica, also a food-borne trematode of the phylum Platyhelminthes, are not carcinogenic. This review explores the premise that the differential activation of macrophages during infection with these food-borne trematodes is a major determinant of the pathological outcome of infection. Like most helminths, the latter stages of infection with all 3 flukes induce M2 macrophages, a phenotype that mediates the functional repair of tissue damaged by the feeding and migratory activities of the parasites. However, there is a critical difference in how the development of pro-inflammatory M1 macrophages is regulated during infection with these parasites. While the activation of the M1 macrophage phenotype is largely suppressed during the early stages of infection with F. hepatica, M1 macrophages predominate in the bile ducts following infection with O. viverrini and C. sinensis. The anti-microbial factors released by M1 macrophages create an environment conducive to mutagenesis, and hence the initiation of tumour formation. Subsequently, the tissue remodelling processes induced by the M2 macrophages promote the proliferation of mutated cells, and the expansion of cancerous tissue. This review will also explore the interactions between macrophages and parasite-derived signals, and their contributions to the stark differences in the innate immune responses to infection with these parasites.


Subject(s)
Clonorchis sinensis , Fasciola hepatica , Fascioliasis , Opisthorchis , Parasites , Animals , Fasciola hepatica/genetics , Macrophages , Opisthorchis/genetics
9.
J Diabetes ; 14(4): 247-260, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35191175

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of the insulin-producing ß-cells within the pancreas. Islet transplantation represents one cure; however, during islet preparation and post transplantation significant amounts of ß-cell death occur. Therefore, prevention and cure of T1D is dependent upon the preservation of ß-cell function and the prevention of ß-cell death. Phosphoinositide 3-kinase (PI3K)/Akt signaling represents a promising therapeutic target for T1D due to its pronounced effects on cellular survival, proliferation, and metabolism. A growing amount of evidence indicates that PI3K/Akt signaling is a critical determinant of ß-cell mass and function. Modulation of the PI3K/Akt pathway, directly (via the use of highly specific protein and peptide-based biologics, excretory/secretory products of parasitic worms, and complex constituents of plant extracts) or indirectly (through microRNA interactions) can regulate the ß-cell processes to ultimately determine the fate of ß-cell mass. An important consideration is the identification of the specific PI3K/Akt pathway modulators that enhance ß-cell function and prevent ß-cell death without inducing excessive ß-cell proliferation, which may carry carcinogenic side effects. Among potential PI3K/Akt pathway agonists, we have identified a novel parasite-derived protein, termed FhHDM-1 (Fasciola hepatica helminth defense molecule 1), which efficiently stimulates the PI3K/Akt pathway in ß-cells to enhance function and prevent death without concomitantly inducing proliferation unlike several other identified stimulators of PI3K/Akt signaling . As such, FhHDM-1 will inform the design of biologics aimed at targeting the PI3K/Akt pathway to prevent/ameliorate not only T1D but also T2D, which is now widely recognized as an inflammatory disease characterized by ß-cell dysfunction and death. This review will explore the modulation of the PI3K/Akt signaling pathway as a novel strategy to enhance ß-cell function and survival.


Subject(s)
Biological Products , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 1/therapy , Humans , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
10.
Trends Parasitol ; 37(12): 1031-1033, 2021 12.
Article in English | MEDLINE | ID: mdl-34583903

ABSTRACT

MicroRNAs (miRNAs) are a class of noncoding RNAs that contribute to a broad range of biological processes through post-transcriptional regulation of gene expression. Helminths exploit this system to target mammalian gene expression, to modulate the host immune response. Recent discoveries have shed new light on the mechanisms involved.


Subject(s)
Fasciola hepatica , Helminths , MicroRNAs , Animals , Fasciola hepatica/genetics , Helminths/genetics , Immunity , Immunomodulation , Mammals , MicroRNAs/genetics
11.
Front Endocrinol (Lausanne) ; 12: 728396, 2021.
Article in English | MEDLINE | ID: mdl-34456879

ABSTRACT

Background: There are a growing number of publications that report an absence of inflammatory based disease among populations that are endemic to parasitic worms (helminths) demonstrating the ability of these parasites to potentially regulate human immune responses. The aim of this systematic review and meta-analysis was to determine the impact of helminth infection on metabolic outcomes in human populations. Methods: Using PRISMA guidelines, six databases were searched for studies published up to August 2020. Random effects meta-analysis was performed to estimate pooled proportions with 95% confidence intervals using the Review Manager Software version 5.4.1. Results: Fourteen studies were included in the review. Fasting blood glucose was significantly lower in persons with infection (MD -0.22, 95% CI -0.40- -0.04, P=0.02), HbA1c levels were lower, although not significantly, and prevalence of the metabolic syndrome (P=0.001) and type 2 diabetes was lower (OR 1.03, 95% CI 0.34-3.09, P<0.0001). Infection was negatively associated with type 2 diabetes when comparing person with diabetes to the group without diabetes (OR 0.44, 95% CI 0.29-0.67, P=0.0001). Conclusions: While infection with helminths was generally associated with improved metabolic function, there were notable differences in efficacy between parasite species. Based on the data assessed, live infection with S. mansoni resulted in the most significant positive changes to metabolic outcomes. Systematic Review Registration: Website: PROSPERO Identified: CRD42021227619.


Subject(s)
Helminthiasis/epidemiology , Metabolic Syndrome/epidemiology , Animals , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Helminthiasis/complications , Helminths , Humans , Incidence , Metabolic Syndrome/etiology , Prevalence , Risk Factors
12.
J Mol Med (Berl) ; 99(11): 1605-1621, 2021 11.
Article in English | MEDLINE | ID: mdl-34374810

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease characterised by the destruction of the insulin-producing beta (ß)-cells within the pancreatic islets. We have previously identified a novel parasite-derived molecule, termed Fasciola hepatica helminth defence molecule 1 (FhHDM-1), that prevents T1D development in non-obese diabetic (NOD) mice. In this study, proteomic analyses of pancreas tissue from NOD mice suggested that FhHDM-1 activated the PI3K/Akt signalling pathway, which is associated with ß-cell metabolism, survival and proliferation. Consistent with this finding, FhHDM-1 preserved ß-cell mass in NOD mice. Examination of the biodistribution of FhHDM-1 after intraperitoneal administration in NOD mice revealed that the parasite peptide localised to the pancreas, suggesting that it exerted a direct effect on the survival/function of ß-cells. This was confirmed in vitro, as the interaction of FhHDM-1 with the NOD-derived ß-cell line, NIT-1, resulted in increased levels of phosphorylated Akt, increased NADH and NADPH and reduced activity of the NAD-dependent DNA nick sensor, poly(ADP-ribose) polymerase (PARP-1). As a consequence, ß-cell survival was enhanced and apoptosis was prevented in the presence of the pro-inflammatory cytokines that destroy ß-cells during T1D pathogenesis. Similarly, FhHDM-1 protected primary human islets from cytokine-induced apoptosis. Importantly, while FhHDM-1 promoted ß-cell survival, it did not induce proliferation. Collectively, these data indicate that FhHDM-1 has significant therapeutic applications to promote ß-cell survival, which is required for T1D and T2D prevention and islet transplantation. KEY MESSAGES: FhHDM-1 preserves ß-cell mass in NOD mice and prevents the development of T1D. FhHDM-1 enhances phosphorylation of Akt in mouse ß-cell lines. FhHDM-1 increases levels of NADH/NADPH in mouse ß-cell lines in vitro. FhHDM-1 prevents cytokine-induced cell death of mouse ß-cell lines and primary human ß-cells in vitro via activation of the PI3K/Akt pathway.


Subject(s)
Fasciola hepatica , Insulin-Secreting Cells/drug effects , Peptides/administration & dosage , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Apoptosis/drug effects , Cells, Cultured , Cytokines , Humans , Insulin-Secreting Cells/metabolism , Male , Mice, Inbred NOD , Signal Transduction/drug effects
13.
Sci Rep ; 11(1): 6712, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33762636

ABSTRACT

Fasciola hepatica, a global worm parasite of humans and their livestock, regulates host innate immune responses within hours of infection. Host macrophages, essential to the first-line defence mechanisms, are quickly restricted in their ability to initiate a classic protective pro-inflammatory immune response. We found that macrophages from infected animals are enriched with parasite-derived micro(mi)RNAs. The most abundant of these miRNAs, fhe-miR-125b, is released by the parasite via exosomes and is homologous to a mammalian miRNA, hsa-miR-125b, that is known to regulate the activation of pro-inflammatory M1 macrophages. We show that the parasite fhe-miR-125b loads onto the mammalian Argonaut protein (Ago-2) within macrophages during infection and, therefore, propose that it mimics host miR-125b to negatively regulate the production of inflammatory cytokines. The hijacking of the miRNA machinery controlling innate cell function could be a fundamental mechanism by which worm parasites disarm the early immune responses of their host to ensure successful infection.


Subject(s)
Fasciola hepatica/physiology , Fascioliasis/etiology , Host-Parasite Interactions , Immunity, Innate , Macrophages/immunology , Macrophages/parasitology , MicroRNAs/genetics , Animals , Disease Susceptibility/immunology , Fascioliasis/metabolism , Gene Expression Regulation , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Macrophages/metabolism , MicroRNAs/chemistry , RNA Interference , Signal Transduction
14.
BMC Genomics ; 22(1): 46, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33430759

ABSTRACT

BACKGROUND: The major pathogenesis associated with Fasciola hepatica infection results from the extensive tissue damage caused by the tunnelling and feeding activity of immature flukes during their migration, growth and development in the liver. This is compounded by the pathology caused by host innate and adaptive immune responses that struggle to simultaneously counter infection and repair tissue damage. RESULTS: Complementary transcriptomic and proteomic approaches defined the F. hepatica factors associated with their migration in the liver, and the resulting immune-pathogenesis. Immature liver-stage flukes express ~ 8000 transcripts that are enriched for transcription and translation processes reflective of intensive protein production and signal transduction pathways. Key pathways that regulate neoblast/pluripotent cells, including the PI3K-Akt signalling pathway, are particularly dominant and emphasise the importance of neoblast-like cells for the parasite's rapid development. The liver-stage parasites display different secretome profiles, reflecting their distinct niche within the host, and supports the view that cathepsin peptidases, cathepsin peptidase inhibitors, saposins and leucine aminopeptidases play a central role in the parasite's destructive migration, and digestion of host tissue and blood. Immature flukes are also primed for countering immune attack by secreting immunomodulating fatty acid binding proteins (FABP) and helminth defence molecules (FhHDM). Combined with published host microarray data, our results suggest that considerable immune cell infiltration and subsequent fibrosis of the liver tissue exacerbates oxidative stress within parenchyma that compels the expression of a range of antioxidant molecules within both host and parasite. CONCLUSIONS: The migration of immature F. hepatica parasites within the liver is associated with an increase in protein production, expression of signalling pathways and neoblast proliferation that drive their rapid growth and development. The secretion of a defined set of molecules, particularly cathepsin L peptidases, peptidase-inhibitors, saponins, immune-regulators and antioxidants allow the parasite to negotiate the liver micro-environment, immune attack and increasing levels of oxidative stress. This data contributes to the growing F. hepatica -omics information that can be exploited to understand parasite development more fully and for the design of novel control strategies to prevent host liver tissue destruction and pathology.


Subject(s)
Fasciola hepatica , Animals , Fasciola hepatica/genetics , Growth and Development , Liver , Phosphatidylinositol 3-Kinases , Proteomics , Transcriptome
15.
Allergy ; 76(4): 1123-1135, 2021 04.
Article in English | MEDLINE | ID: mdl-32799375

ABSTRACT

BACKGROUND: The receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) is implicated in COPD. Although these receptors share common ligands and signalling pathways, it is not known whether they act in concert to drive pathological processes in COPD. We examined the impact of RAGE and/or TLR4 gene deficiency in a mouse model of COPD and also determined whether expression of these receptors correlates with airway neutrophilia and airway hyperresponsiveness (AHR) in COPD patients. METHODS: We measured airway inflammation and AHR in wild-type, RAGE-/- , TLR4-/- and TLR4-/- RAGE-/- mice following acute exposure to cigarette smoke (CS). We also examined the impact of smoking status on AGER (encodes RAGE) and TLR4 bronchial gene expression in patients with and without COPD. Finally, we determined whether expression of these receptors correlates with airway neutrophilia and AHR in COPD patients. RESULTS: RAGE-/- mice were protected against CS-induced neutrophilia and AHR. In contrast, TLR4-/- mice were not protected against CS-induced neutrophilia and had more severe CS-induced AHR. TLR4-/- RAGE-/- mice were not protected against CS-induced neutrophilia but were partially protected against CS-induced mediator release and AHR. Current smoking was associated with significantly lower AGER and TLR4 expression irrespective of COPD status, possibly reflecting negative feedback regulation. However, consistent with preclinical findings, AGER expression correlated with higher sputum neutrophil counts and more severe AHR in COPD patients. TLR4 expression did not correlate with neutrophilic inflammation or AHR. CONCLUSIONS: Inhibition of RAGE but not TLR4 signalling may protect against airway neutrophilia and AHR in COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Respiratory Hypersensitivity , Animals , Antigens, Neoplasm , Humans , Mice , Mitogen-Activated Protein Kinases , Pulmonary Disease, Chronic Obstructive/genetics , Receptor for Advanced Glycation End Products/genetics , Smoking , Toll-Like Receptor 4/genetics
16.
Front Immunol ; 11: 1604, 2020.
Article in English | MEDLINE | ID: mdl-32849543

ABSTRACT

Background: The unique immunomodulatory capacity of helminth parasites has been investigated as a novel strategy in the prevention of allograft rejection after transplantation. This review was conducted to fully evaluate the specific effects of helminth therapy on allograft survival reported in published studies of animal models of allogeneic transplantation. Method: Following PRISMA protocol guidelines, a literature search was conducted using PubMed, MEDLINE via OvidSP, along with additional manual searches of selected reference lists. Publications describing helminth intervention within allograft transplantation models were screened for relevance to eligibility criteria. Primary and secondary outcomes were extracted using standardized data collection tables. The SYRCLE risk of bias assessment tool was used for quality assessment. Due to heterogeneity of study designs, meta-analysis could not be performed; rather outcomes are presented as a narrative synthesis with concept mapping. This review was registered in PROSPERO with ID: CRD42018097175. Results: The literature search generated 1,443 publications, which after screening for relevance to the eligibility criteria yielded 15 publications for qualitative analysis. All 15 publications reported improvement to allograft survival as a result of helminth therapy. This prolonged allograft survival was not significantly different when helminth-derived products were used compared to live infection. However, the extent of positive impact on allograft survival was noted to be dependent on study design factors, such as the chronicity of the live helminth infection, allograft type and the species/genus of helminth selected. Conclusion: Both live and product-based helminth therapy have potential applications as novel immune regulators or adjuncts for the prevention of allograft rejection. However, there were differences in efficacy between different worms and preparations of worm-derived products. Therefore, further studies are required to determine the most appropriate worm for a specific allograft, to elucidate the optimal dose and route of administration, and to better understand the modulation of immune responses that can mediate tolerance.


Subject(s)
Graft Rejection/prevention & control , Therapy with Helminths , Transplantation, Homologous/adverse effects , Animals , Graft Rejection/etiology , Graft Survival , Helminths/classification , Helminths/immunology , Humans , Organ Transplantation/adverse effects , Organ Transplantation/methods , Parasite Load , Therapy with Helminths/methods , Transplantation, Homologous/methods , Treatment Outcome
17.
PLoS Negl Trop Dis ; 14(7): e0008470, 2020 07.
Article in English | MEDLINE | ID: mdl-32644998

ABSTRACT

BACKGROUND: Sm16, also known as SPO-1 and SmSLP, is a low molecular weight protein (~16kDa) secreted by the digenean trematode parasite Schistosoma mansoni, one of the main causative agents of human schistosomiasis. The molecule is secreted from the acetabular gland of the cercariae during skin invasion and is believed to perform an immune-suppressive function to protect the invading parasite from innate immune cell attack. METHODOLOGY/PRINCIPAL FINDINGS: We show that Sm16 homologues of the Schistosomatoidea family are phylogenetically related to the helminth defence molecule (HDM) family of immunomodulatory peptides first described in Fasciola hepatica. Interrogation of 69 helminths genomes demonstrates that HDMs are exclusive to trematode species. Structural analyses of Sm16 shows that it consists predominantly of an amphipathic alpha-helix, much like other HDMs. In S. mansoni, Sm16 is highly expressed in the cercariae and eggs but not in adult worms, suggesting that the molecule is of importance not only during skin invasion but also in the pro-inflammatory response to eggs in the liver tissues. Recombinant Sm16 and a synthetic form, Sm16 (34-117), bind to macrophages and are internalised into the endosomal/lysosomal system. Sm16 (34-117) elicited a weak pro-inflammatory response in macrophages in vitro but also suppressed the production of bacterial lipopolysaccharide (LPS)-induced inflammatory cytokines. Evaluation of the transcriptome of human macrophages treated with a synthetic Sm16 (34-117) demonstrates that the peptide exerts significant immunomodulatory effects alone, as well as in the presence of LPS. Pathways most significantly influenced by Sm16 (34-117) were those involving transcription factors peroxisome proliferator-activated receptor (PPAR) and liver X receptors/retinoid X receptor (LXR/RXR) which are intricately involved in regulating the cellular metabolism of macrophages (fatty acid, cholesterol and glucose homeostasis) and are central to inflammatory responses. CONCLUSIONS/SIGNIFICANCE: These results offer new insights into the structure and function of a well-known immunomodulatory molecule, Sm16, and places it within a wider family of trematode-specific small molecule HDM immune-modulators with immuno-biotherapeutic possibilities.


Subject(s)
Antigens, Helminth/metabolism , Helminth Proteins/metabolism , Schistosoma mansoni/metabolism , Animals , Antibodies, Helminth , Antigens, Helminth/genetics , Antigens, Helminth/immunology , Bone Marrow Cells , Cell Line, Tumor , Gene Expression Regulation , Helminth Proteins/genetics , Humans , Macrophages/parasitology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Ovum , Phylogeny , Protein Transport
18.
Front Immunol ; 11: 608686, 2020.
Article in English | MEDLINE | ID: mdl-33584684

ABSTRACT

Understanding mechanisms by which parasitic worms (helminths) control their hosts' immune responses is critical to the development of effective new disease interventions. Fasciola hepatica, a global scourge of humans and their livestock, suppresses host innate immune responses within hours of infection, ensuring that host protective responses are quickly incapacitated. This allows the parasite to freely migrate from the intestine, through the liver to ultimately reside in the bile duct, where the parasite establishes a chronic infection that is largely tolerated by the host. The recent identification of micro(mi)RNA, small RNAs that regulate gene expression, within the extracellular vesicles secreted by helminths suggest that these non-coding RNAs may have a role in the parasite-host interplay. To date, 77 miRNAs have been identified in F. hepatica comprising primarily of ancient conserved species of miRNAs. We hypothesized that many of these miRNAs are utilized by the parasite to regulate host immune signaling pathways. To test this theory, we first compiled all of the known published F. hepatica miRNAs and critically curated their sequences and annotations. Then with a focus on the miRNAs expressed by the juvenile worms, we predicted gene targets within human innate immune cells. This approach revealed the existence of targets within every immune cell, providing evidence for the universal management of host immunology by this parasite. Notably, there was a high degree of redundancy in the potential for the parasite to regulate the activation of dendritic cells, eosinophils and neutrophils, with multiple miRNAs predicted to act on singular gene targets within these cells. This original exploration of the Fasciola miRnome offers the first molecular insight into mechanisms by which F. hepatica can regulate the host protective immune response.


Subject(s)
Fasciola hepatica/immunology , Fascioliasis/immunology , Immunity, Innate/immunology , Mammals/immunology , Animals , Fascioliasis/parasitology , Host-Parasite Interactions/immunology , Humans , Liver/immunology , Liver/parasitology , Mammals/parasitology , MicroRNAs/immunology , Signal Transduction/immunology
19.
Adv Parasitol ; 104: 113-164, 2019.
Article in English | MEDLINE | ID: mdl-31030768

ABSTRACT

Fasciolosis caused by trematode parasites of the genus Fasciola is a global disease of livestock, particularly cattle, sheep, water buffalo and goats. It is also a major human zoonosis with reports suggesting that 2.4-17 million people are infected worldwide, and 91.1 million people currently living at risk of infection. A unique feature of these worms is their reliance on a family of developmentally-regulated papain-like cysteine peptidases, termed cathepsins. These proteolytic enzymes play central roles in virulence, infection, tissue migration and modulation of host innate and adaptive immune responses. The availability of a Fasciola hepatica genome, and the exploitation of transcriptomic and proteomic technologies to probe parasite growth and development, has enlightened our understanding of the cathepsin-like cysteine peptidases. Here, we clarify the structure of the cathepsin-like cysteine peptidase families and, in this context, review the phylogenetics, structure, biochemistry and function of these enzymes in the host-parasite relationship.


Subject(s)
Fasciola/enzymology , Host-Parasite Interactions/physiology , Peptide Hydrolases/metabolism , Animals , Fasciola/genetics , Genome, Helminth/genetics , Humans , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...